Case report

Spinal muscular atrophy due to a “de novo” 1.3 Mb deletion: Implication for genetic counseling

Luciana Rodrigues Jacy da Silva a, Mileny Esbravatti Stephano Colovati a, Bruno Coprerski a, Carlos Eugênio Fernandez de Andrade b, Edmar Zanoteli c, Salmo Raskin d, Mariana Moysés Oliveira e, Maria Isabel Melaragno e, Ana Beatriz Alvarez Perez a,*

a Medical Genetics Center, Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
b Santa Marcelina Hospital, São Paulo, Brazil
c Department of Neurology, Medical School of the University of São Paulo, São Paulo, Brazil
d Genetika, Genetic Counseling and Genetics Laboratory, Curitiba, Brazil
e Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil

Received 29 June 2012; received in revised form 25 October 2012; accepted 15 January 2013

Abstract

We report a 3-year-old female with type I spinal muscular atrophy (SMA) born to a young and non-consanguineous couple. The child presented at two months of life with intense muscle weakness affecting predominantly proximal portions of the limbs, especially the legs, muscle hypotonia, fasciculation of the tongue, and severe respiratory muscle involvement. She remained in an intensive care unit with an assisted ventilation system from the fourth month of life. She died at 3 years of age from pulmonary infection. Molecular analysis confirmed the diagnosis of SMA but revealed that only the father was an asymptomatic carrier. Because SMN1 is mapped in a complex region containing repetitive elements due to an inverted duplication of approximately 500 kb, we carry out an SNP array and detected a 1.3 Mb deletion including the SMN1 and SMN2 genes that explain the disease.

Keywords: Spinal muscular atrophy; SNP array; Genetic counseling; SMN gene

1. Introduction

Spinal muscular atrophy (SMA I; MIM#253300) is a neuromuscular autosomal recessive disorder. Approximately 95–98% of individuals with clinical diagnosis of SMA are homozygous for an exon 7 deletion in both copies of the SMN1 gene [1,2]. Approximately 2–5% of patients are compound heterozygotes for a deletion of at least SMN1 exon 7 and an intragenic inactivating mutation of SMN1 [1,3]. Nearly 2% of parents of an affected child are not carriers of a SMN1 gene mutation, and in these SMA cases the other altered allele is hit by a “de novo” mutation [3,4]. Changes in expression of the centromeric copy of SMN (SMN2) are known to modify the phenotype [5–7].

Three mechanisms seem to play a crucial role in the occurrence of de novo mutations in SMA: (1) unequal crossing-over between homologous chromosomes, (2) intrachromosomal deletion, and (3) gene conversion [8–11]. Because of its duplicated structure, including SMN and NAIP homologues, the SMA region seems to be prone to unequal rearrangement or gene conversion [10,12,13]. It appears that unequal recombination causing larger deletions are associated with more severe phenotypes, whereas intrachromosomal deletions and gene conversions are associated with milder SMA [11,14].
The detection of a de novo rearrangement resulting in the loss of the telomeric copy of the \(SMN \) gene in an SMA family indicates a recurrence risk reduced from 25% to a substantially lower percentage, the only risk in this situation coming from recurrent de novo mutation or germ-line mosaicism in physical structure that might predispose to de novo rearrangements.

2. Case report

We report here a 3-years-old female diagnosed with type I SMA, born from a young and non consanguineous couple who has a previous healthy daughter. She presented at two months of life an intense muscle weakness affecting predominantly proximal portions of the limbs, especially the legs, muscle hypotonia, fasciculation of the tongue, mild facial muscle weakness sparing the ocular motility, and intense respiratory muscle involvement. The child remained in an intensive care unit with assisted ventilation from the fourth month of life. She died at 3 years of age from pulmonary infection. The molecular study by quantitative PCR revealed deletion of exon 7 in homozygosis of \(SMN1 \) gene and only two copies of exons 7 and 8 of the \(SMN2 \) gene, consistent with the severity of the case. The analysis performed in the patient’s parents revealed that the father has one normal copy of the \(SMN1 \) gene and one \(SMN1 \) allele with a deletion of exon 7, as well as two copies of the \(SMN2 \) gene. The analysis performed in the mother revealed two wild copies of \(SMN1 \) gene and one copy of \(SMN2 \), demonstrating that she is not a carrier of SMA. The genome-wide study performed in the patient using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 showed arr 5q13.2(69,074,964–70,391,173)×1 (GRCh/hg19) revealing a 1.3 Mb deletion including \(SMN1 \) and \(SMN2 \) genes (Fig. 1a). The same study performed in the parents did not show copy number abnormalities in the same region (Fig. 1b and c).

3. Discussion

The \(SMN1 \) is mapped in a complex region containing a variety of pseudogenes and repetitive elements due to an inverted duplication of the region of approximately 500 kb [1,14]. This unstable region is subject to “de novo” rearrangements, including gene duplication, conversion and deletions, mainly due to the high (>95%) homology of the low copy repeats present in this region act as substrates for non-allelic homologous recombination (NAHR), leading to loss or gain of dosage sensitive genes [12,13,15]. The NAHR can occur when two low copy repeats are located on the same chromosome in the same orientation, leading to deletion
and/or duplication or when they are in opposite orientation, resulting in inversion of this region [12,13]. It has been suggested that the presence of low copy repeats in this region can contribute to instability in the region and unequal recombination events in the SMA [11].

There is no previous report of whole genome array study showing a deletion in the 5q13 region. We propose that “de novo” rearrangements in SMA may occur more frequently that previously suspected considering the genomic architecture of the 5q13 region and array studies must be considered in estimating the recurrence especially in cases of non consanguineous parents. The evaluation of deletion may change the risk for the recurrence of the disease in genetic counseling. Thus, the proband received the paternal mutation of the gene SMN1 (deletion of exon 7) from her father and in the allele received from her mother occurred a “de novo” 1.3 deletion including SMN1 gene. The SNP array revealed normal in the parents for the region 5q13.2. In this case, the recurrence risk for SMA is lower than the 25% usually estimated.

References